For information about COVID-19, including symptoms and prevention, please read our COVID-19 patient guide. If you need to see your provider, please contact us to see if a Video Visit is right for you. Please also consider supporting Weill Cornell Medicine’s efforts against the pandemic.
Department of Anesthesiology

You are here

Differential effects of anesthetic and nonanesthetic cyclobutanes on neuronal voltage-gated sodium channels.

TitleDifferential effects of anesthetic and nonanesthetic cyclobutanes on neuronal voltage-gated sodium channels.
Publication TypeJournal Article
Year of Publication2000
AuthorsRatnakumari L, Vysotskaya TN, Duch DS, Hemmings HC
JournalAnesthesiology
Volume92
Issue2
Pagination529-41
Date Published2000 Feb
ISSN0003-3022
KeywordsAnesthetics, Inhalation, Animals, Calcium Signaling, Cerebral Cortex, Cyclobutanes, Electrophysiology, Ganglia, Spinal, Glutamic Acid, Ion Channel Gating, Membrane Potentials, Neurons, Patch-Clamp Techniques, Potassium Chloride, Presynaptic Terminals, Rats, Rats, Sprague-Dawley, Sodium Channels, Synaptosomes, Veratridine
Abstract

BACKGROUND: Despite their key role in the generation and propagation of action potentials in excitable cells, voltage-gated sodium (Na+) channels have been considered to be insensitive to general anesthetics. The authors tested the sensitivity of neuronal Na+ channels to structurally similar anesthetic (1-chloro-1,2,2-trifluorocyclobutane; F3) and nonanesthetic (1,2-dichlorohexafluorocyclobutane; F6) polyhalogenated cyclobutanes by neurochemical and electrophysiologic methods.

METHODS: Synaptosomes (pinched-off nerve terminals) from adult rat cerebral cortex were used to determine the effects of F3 and F6 on 4-aminopyridine- or veratridine-evoked (Na+ channel-dependent) glutamate release (using an enzyme-coupled spectrofluorimetric assay) and increases in intracellular Ca2+ ([Ca2+]i) (using ion-specific spectrofluorimetry). Effects of F3 and F6 on Na+ currents were evaluated directly in rat lumbar dorsal root ganglion neurons by whole-cell patch-clamp recording.

RESULTS: F3 inhibited glutamate release evoked by 4-aminopyridine (inhibitory concentration of 50% [IC50] = 0.77 mM [approximately 0.8 minimum alveolar concentration (MAC)] or veratridine (IC50 = 0.42 mM [approximately 0.4 MAC]), and veratridine-evoked increases in [Ca2+]i (IC50 = 0.5 mM [approximately 0.5 MAC]) in synaptosomes; F6 had no significant effects up to 0.05 mM (approximately twice the predicted MAC). F3 caused reversible membrane potential-independent inhibition of peak Na+ currents (70+/-9% block at 0.6 mM [approximately 0.6 MAC]), and a hyperpolarizing shift in the voltage-dependence of steady state inactivation in dorsal root ganglion neurons (-21+/-9.3 mV at 0.6 mM). F6 inhibited peak Na+ currents to a lesser extent (16+/-2% block at 0.018 mM [predicted MAC]) and had minimal effects on steady state inactivation.

CONCLUSIONS: The anesthetic cyclobutane F3 significantly inhibited Na+ channel-mediated glutamate release and increases in [Ca2+]i. In contrast, the nonanesthetic cyclobutane F6 had no significant effects at predicted anesthetic concentrations. F3 inhibited dorsal root ganglion neuron Na+ channels with a potency and by mechanisms similar to those of conventional volatile anesthetics; F6 was less effective and did not produce voltage-dependent block. This concordance between anesthetic activity and Na+ channel inhibition supports a role for presynaptic Na+ channels as targets for general anesthetic effects and suggests that shifting the voltage-dependence of Na+ channel inactivation is an important property of volatile anesthetic compounds.

Alternate JournalAnesthesiology
PubMed ID10691242
Grant ListGM 58055 / GM / NIGMS NIH HHS / United States