Title | Interpreting Stroke-Impaired Electromyography Patterns through Explainable Artificial Intelligence. |
Publication Type | Journal Article |
Year of Publication | 2024 |
Authors | Hussain I, Jany R |
Journal | Sensors (Basel) |
Volume | 24 |
Issue | 5 |
Date Published | 2024 Feb 21 |
ISSN | 1424-8220 |
Keywords | Adult, Aged, Artificial Intelligence, Calcium Compounds, Electromyography, Female, Humans, Ischemic Stroke, Male, Oxides, Stroke |
Abstract | Electromyography (EMG) proves invaluable myoelectric manifestation in identifying neuromuscular alterations resulting from ischemic strokes, serving as a potential marker for diagnostics of gait impairments caused by ischemia. This study aims to develop an interpretable machine learning (ML) framework capable of distinguishing between the myoelectric patterns of stroke patients and those of healthy individuals through Explainable Artificial Intelligence (XAI) techniques. The research included 48 stroke patients (average age 70.6 years, 65% male) undergoing treatment at a rehabilitation center, alongside 75 healthy adults (average age 76.3 years, 32% male) as the control group. EMG signals were recorded from wearable devices positioned on the bicep femoris and lateral gastrocnemius muscles of both lower limbs during indoor ground walking in a gait laboratory. Boosting ML techniques were deployed to identify stroke-related gait impairments using EMG gait features. Furthermore, we employed XAI techniques, such as Shapley Additive Explanations (SHAP), Local Interpretable Model-Agnostic Explanations (LIME), and Anchors to interpret the role of EMG variables in the stroke-prediction models. Among the ML models assessed, the GBoost model demonstrated the highest classification performance (AUROC: 0.94) during cross-validation with the training dataset, and it also overperformed (AUROC: 0.92, accuracy: 85.26%) when evaluated using the testing EMG dataset. Through SHAP and LIME analyses, the study identified that EMG spectral features contributing to distinguishing the stroke group from the control group were associated with the right bicep femoris and lateral gastrocnemius muscles. This interpretable EMG-based stroke prediction model holds promise as an objective tool for predicting post-stroke gait impairments. Its potential application could greatly assist in managing post-stroke rehabilitation by providing reliable EMG biomarkers and address potential gait impairment in individuals recovering from ischemic stroke. |
DOI | 10.3390/s24051392 |
Alternate Journal | Sensors (Basel) |
PubMed ID | 38474928 |
PubMed Central ID | PMC10935041 |