Endothelial molecular changes in a rodent model of arteriovenous malformation.

TitleEndothelial molecular changes in a rodent model of arteriovenous malformation.
Publication TypeJournal Article
Year of Publication2008
AuthorsKarunanyaka A, Tu J, Watling A, Storer KP, Windsor A, Stoodley MA
JournalJ Neurosurg
Date Published2008 Dec
KeywordsAnimals, Arteriovenous Malformations, E-Selectin, Endothelium, Vascular, Male, Models, Animal, P-Selectin, Rats, Rats, Sprague-Dawley, Thrombomodulin, Vascular Endothelial Growth Factor A, von Willebrand Factor

OBJECT: The cellular and molecular processes underlying arteriovenous malformation (AVM) development and response to radiosurgery are largely unknown. An animal model mimicking the molecular properties of AVMs is required to examine these processses. This study was performed to determine whether the endothelial molecular changes in an animal model of arteriovenous fistula (AVF) are similar to those in human AVMs.

METHODS: Arteriovenous fistulas were created in 18 Sprague-Dawley rats by end-to-side anastomosis of the left jugular vein to the common carotid artery creating a model "nidus" of arterialized branching veins that coalesce into a "draining vein" (sigmoid sinus). Six control animals underwent sham operations.

RESULTS: After 1 or 3 days, or 1, 3, 6, or 12 weeks, fresh-frozen sections of the fistula, nidus vessels, and contralateral vessels were studied immunohistochemically for thrombomodulin, von Willebrand factor, E-selectin, P-selectin, and vascular endothelial growth factor.

CONCLUSIONS: The AVF model has a "nidus" with endothelial molecular changes similar to those observed in human AVMs, supporting its use as a model for studying the effects of radiosurgery on AVMs.

Alternate JournalJ. Neurosurg.
PubMed ID19035737