Title | Associations of amyloid-β oligomers and plaques with neuropathology in the App NL-G-F mouse. |
Publication Type | Journal Article |
Year of Publication | 2024 |
Authors | Tang J, Huang H, Muirhead RCJ, Zhou Y, Li J, DeFelice J, Kopanitsa MV, Serneels L, Davey K, Tilley BS, Gentleman S, Matthews PM |
Journal | Brain Commun |
Volume | 6 |
Issue | 4 |
Pagination | fcae218 |
Date Published | 2024 |
ISSN | 2632-1297 |
Abstract | Amyloid-β pathology and neurofibrillary tangles lead to glial activation and neurodegeneration in Alzheimer's disease. In this study, we investigated the relationships between the levels of amyloid-β oligomers, amyloid-β plaques, glial activation and markers related to neurodegeneration in the App NL-G-F triple mutation mouse line and in a knock-in line homozygous for the common human amyloid precursor protein (App hu mouse). The relationships between neuropathological features were characterized with immunohistochemistry and imaging mass cytometry. Markers assessing human amyloid-β proteins, microglial and astrocytic activation and neuronal and synaptic densities were used in mice between 2.5 and 12 months of age. We found that amyloid-β oligomers were abundant in the brains of App hu mice in the absence of classical amyloid-β plaques. These brains showed morphological changes consistent with astrocyte activation but no evidence of microglial activation or synaptic or neuronal pathology. In contrast, both high levels of amyloid-β oligomers and numerous plaques accumulated in App NL-G-F mice in association with substantial astrocytic and microglial activation. The increase in amyloid-β oligomers over time was more strongly correlated with astrocytic than with microglia activation. Spatial analyses suggested that activated microglia were more closely associated with amyloid-β oligomers than with amyloid-β plaques in App NL-G-F mice, which also showed age-dependent decreases in neuronal and synaptic density markers. A comparative study of the two models highlighted the dependence of glial and neuronal pathology on the nature and aggregation state of the amyloid-β peptide. Astrocyte activation and neuronal pathology appeared to be more strongly associated with amyloid-β oligomers than with amyloid-β plaques, although amyloid-β plaques were associated with microglia activation. |
DOI | 10.1093/braincomms/fcae218 |
Alternate Journal | Brain Commun |
PubMed ID | 39035420 |
PubMed Central ID | PMC11258573 |