Introduction:

- Ambulatory meniscectomies represent one of the most commonly performed orthopedic operations in the US.
- Can be performed under various anesthesia types.
- Little is known about the utilization and related characteristics of these various approaches.

Objective:

- Determine anesthesia practice patterns representative of a large number of participating institutions.

Materials and Methods:

- Data from the Anesthesia Quality Institute (AQI) 2010–2013 were utilized.
- Clinical Classifications Software (CCS) can be performed under various anesthesia types.
- Groups underwent the procedure under general anesthesia (GA), neuraxial anesthesia (NA), and regional (RA) as the primary anesthetic.
- Patient, provider, and health care system-related characteristics were compared among groups.
- Chi-square and ANOVA tests were used to determine differences between groups and a p-value of 0.05 was defined as significant.
- Statistical analyses conducted in SAS 9.3.

Results:

- Approximately 7 million records were identified from 2010–2013 in the AQI database.
- 88,639 meniscectomies were identified that contained complete information on anesthesia type.
- Primary type of anesthesia was listed as GA in 95.2%, as NA in 1.6%, and RA in 3.2% of cases.
- Patients in the GA group were younger and had lower ASA class scores than those in the NA and RA groups (51.6 vs. 56.7 vs. 53.9 years, P<0.001; ASA class ≥ 3, 16.0% vs. 35.9% vs. 24.7%, P<0.001).
- Average anesthesia times were longer for GA and NA than for RA (63 vs. 66 vs. 48 minutes, P<0.001).
- A board certified anesthesiologist was present in 66.8% of GA, 91.2% of NA and 79.4% of RA cases.
- While the use of GA was fairly evenly distributed between institution types, the use of NA and RA was proportionately highest in medium community hospitals and freestanding facilities, respectively.

Discussion:

- The number of meniscectomies identified in the AQI data were performed under GA.
- Variables potentially involved in the choice of anesthetic technique by providers included:
 - ASA status, length of procedure, provider type, and the board certification status of the anesthesiologists.
- Older patients with a higher ASA status tended to receive NA, while younger patients with a lower ASA score received GA.
- Procedures where NA was provided took longer than those with GA or RA, on average.
- Board certification of the attending physician differed among all three anesthesia types.

Table 1: General Demographics Statistics by Anesthesia Type, 2010 – 2013

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>GENERAL</th>
<th>NEURAXIAL</th>
<th>REGIONAL</th>
<th>TOTAL</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unweighted N</td>
<td>64,394</td>
<td>1,428</td>
<td>2,007</td>
<td>88,639</td>
<td></td>
</tr>
<tr>
<td>Average Age</td>
<td>51.4 (31.5)</td>
<td>51.7</td>
<td>51.7</td>
<td>51.7</td>
<td>51.7 (51.7, 51.9)</td>
</tr>
<tr>
<td>Gender</td>
<td>**</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>45,737 (71.8)</td>
<td>771 (53.3)</td>
<td>1,332 (66.5)</td>
<td>48,850 (55.1)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Female</td>
<td>18,658 (28.2)</td>
<td>657 (46.7)</td>
<td>675 (33.5)</td>
<td>20,488 (44.9)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Unknown</td>
<td>50 (0.8)</td>
<td>3 (0.2)</td>
<td>9 (0.4)</td>
<td>62 (0.7)</td>
<td></td>
</tr>
<tr>
<td>Average ASA Class</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (95% CI)</td>
<td>1.9 (1.9, 1.9)</td>
<td>2.0 (2.0, 2.0)</td>
<td>2.0 (2.0, 2.0)</td>
<td>1.9 (1.8, 1.9)</td>
<td></td>
</tr>
<tr>
<td>ASA Class: Mean (95% CI)</td>
<td>3 or Higher</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Anesthesia Times</td>
<td>13,461 (16.0)</td>
<td>516 (36.9)</td>
<td>694 (24.7)</td>
<td>14,091 (16.6)</td>
<td></td>
</tr>
<tr>
<td>Minutes: Mean (95% CI)</td>
<td>65.6 (62.4)</td>
<td>65.6 (62.4)</td>
<td>65.6 (62.4)</td>
<td>65.6 (62.4)</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions:

- NA and PNB are more frequently considered among older, sicker patients; reasons for this remain speculative.
- Data can be used to allow institutions to compare their own practice patterns against this cohort.

The authors acknowledge AQI and the National Anesthesia Clinical Outcomes Registry (NACOR) for sharing data that made the preparation of this poster possible.